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S U M M A R Y  
In a recent paper in this Journal  (7, 1973, 1-6) T am suggested that  early work by Batchelor on the decay of a laminar 
trailing vortex was in error. Tam's  claim was that the decay of axial velocity defect at the center of the vortex went as 
x - ~ instead of x -  1 log x. The purpose of this note is to refute Tam ' s  claim. A further term in the asymptotic  expansion 
for the circulation in the vortex is also obtained. 

A similarity solution for the steady flow far downstr6am in a laminar trailing vortex was given 
by Batchelor [1]. He began with the Navier-Stokes equations written in cylindrical polar 
coordinates (x, r, 0). The equations were linearized starting with two approximations which 
were basically of boundary layer type: (i) He took axial variations to be much smaller than 
radial variations such that 

ox dr" 

(ii) The axial component of velocity, u, was much greater than the radial component, v, so that 

u ~ v .  

A final approximation was that: (iii) A state had been reached such that the axial velocity 
component differed little from the free stream, U. Thus l u -  UI ~ U. 

A similarity parameter ~/was defined as 

Ur 2 

q - 4 v x  ' (1) 

where v is the kinematic viscosity of the fluid, taken to be incompressible, with constant 
density p. 

The equation of motion for the swirl velocity w was written in terms of the circulation C. 
This equation was integrated and the asymptotic solution as x ~  oo given by 

C = r w  = C O (1 -e-~-), (2) 

with Co being the circulation at large r, assumed to be non-zero. 
The pressure field was found and written as 

P o - P  _ C~ U 
p 8 v x  P ( q ) "  (3) 

where 
(~ (1-e-r 2 

P(7/) = _ 42 d~. 

With the preceding formulas, Batchelor constructed an asymptotic solution for the axial 
velocity. He found the solution by implicitly requiring another condition in addition to the 
more obvious boundary conditions of finiteness at V/= 0 and vanishing velocity deficit as 

Journal of Engineering Math., Vol. 8 0974) 339-343 



340 I.H. Herron, Jr. 

x ~  oo and f/--* oo. This implicit condition is that the mass flux of the velocity deficit through 
any cross-sectional plane x = const, be finite. Furthermore by considering the drag associated 
with the core of the trailing vortex, Batchelor was able to fully resolve the axial velocity com- 
ponent. He considered both vortices from a wing to obtain 

1 e_ v { 1 D  ( xU ~_)} CZo 
u = U - ~  --p + Co z g + l o g - - v  - 2 log + ~ Q 2 ( s  

Here, D is the total drag on the wing, c~ is a positive constant close to 1, and s is the distance 
between the two trailing vortices far downstream. The function Q2 (f/) is given by 

~/ '~ , /1-e t  + p(t)et)dt. 
Q2(f/) = e-  J o  [ ~  

Batchelor's asymptotic solution was criticized by Tam [-2], who attempted to refute its 
validity on the grounds of non-uniqueness. Tam sought to reconcile the ambiguity he had 
created by writing the equations of motion in paraboloidal coordinates (f, 7, 0) and solving 
them by a perturbation expansion. The solution which he obtained suffers from two defects. 

Firstly, the method Tam used to attack the "arbitrariness" of Batchelor's solution may also 
be applied to his own. Secondly, the mass-flux deficit given by his solution is not finite. 

We begin with the exact dimensionless equations of motion as given by Tam : 

8~0 8~0 -~(~+,/)z, ~ -  + 7 ~7~ - 

6 ~21 8 2 1 81 81 

~2 ~ 82 ~ ~ (0, ~) 
0 ~ -  + 7 872 - 8(~, 7) 

The independent variables (f, 7) are given by 

U = ~ [(~+~2)~+~], 

(4a) 

t/ = 
U 2 1 y~ [(x2+, - y - x ] .  

g2 (1 892 1 ~ ,  (4b) -8(0,0 r ~  ;78~ ; ~ /  

(4c) 

Thus for x >> r, to a first approximation, 7 and f/, defined in (1), are the same. 
The line 7 = 0 corresponds exactly to r = 0. The dependent variables are the stream function 

U 0" 
0=2- V , 

the swirl component of vorticity 

2v 2 l* 
l -  

U 3 ' 

and the circulation 

~2" 

Co 

The asterisks denote dimensional quantities. 
The velocity components in this system are 

1 8 0  1 80 - , ~ -  (5) 

The only non-dimensional parameter appearing is a Taylor number, T -  C~/4v 2. 
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As stated, the non-linear problem is elliptic. Thus boundary conditions involving r ? r  
and f2 must be given along ~ = 0, t/= 0 and at infinity to make the problem fully posed. This 
information is not completely available, so an asymptotic solution is sought for ~ >> ~/, ~--+ ~ .  
Tam made a perturbation expansion about  a free stream with a decaying vortex: 

r (~, t/) ~ ~r/+ r t/) + . . . .  (6a) 

Q (if, t/) ~ ~2o (t/) +O(~)(ff, q )+  . . . .  (6b) 

The boundary conditions he used were" 

66 
= r = 0 ,  ~ = ~-K191(~) at ~ = 0 ,  (7a) 

f 2 ~ l ,  ~----> ~ as t / ~ o o .  (7b) 

However, the above formulation is misleading. In equation (7a), -K191(~)  represents the 
velocity deficit on the axis. Tam stated it as a boundary condition but it is actually unknown. No 
conditions are given for ~ = t/(x =0)  or ff~ oo. This is so because under the assumption ~ >> t/, 

0 0 

and the equations are then parabolic. 
The substitution of equations (6) into (4) yields the equations" 

i o)= 0 ,  (8) 

~2 ~/(1) __~2/(1) (9a) 

0q \ (?/73 ] + N rt \ ~ Y - J  - ~r/ c3t/20 ~ - T f2 ; a o ,  (9b) 

= 0 .  (lO) 

The solution to equation (10) is 

s o = 1 - e  -u , 

representing the asymptotic decay to a constant circulation. 
Equations (9a, b) differ from Tam's equations [2; 22, 23] for at this point he had made a 

separation assumption 0 r (~, t/)=g~ (()0~ (q), requiring that g l (()= o (~). With this restriction 
he reasoned ga(() must be a constant. He wanted to insure that the inhomogeneous term 
in equation (9b) be present. However, in doing so Tam used an approach for which he had 
criticized Batchelor in an earlier part of his paper. Tam had argued in section 2, of his work that 
0(1)(~, t/) satisfying equation (9b) might be written as: 

k 

= Z (11) 
i=1 

Tam's idea was to show that any separated combination of k functions satisfying the homoge- 
neous part of (9b) plus a particular integral would be a solution. He explicitly demonstrated 
two possible such solutions. He also produced the particular integral, a function of t/only, 

f e - ~ d x  e t p ( t ) d t  . (12) 
@(1)(~) = Y 0 0 

P (t) has the same previously defined functional form. The "boundary conditions" to be satisfied 
are" 
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, Om (o, = - Klgl( ) (13a) 0 m ( 0 ,  = 0 ,  W 

~k~ --, 0 as i/--+oo. (13b) 

A similar ambiguity may be created in Tam's solution by writing the stream function as a 
different combinat ion of separation functions, such as 

~k (1) (~, 1/) = log ~ ~'ll (I/) + 01z (11). (14) 

This particular choice may seem as arbitrary as Tam's choice. But it 'should be mentioned that 
Batchelor made this choice after integrating the equation for the axial velocity, the equivalent 
of equation (9b), over a cross-sectional plane. 

Equations for 01 a and ~012 in (14) are found by substituting into equation (9b). When this is 
done and the boundary conditions are satisfied we obtain 

Oll  (t/)= A ( 1 - e - " ) ,  (15a) 

[" f 'r 0,2(~) = A e -r d t + B ( 1 - e - " )  (15b) 
0 O t 

where A and B are as yet arbitrary constants. 
F rom the results of Batchelor, writing (15) in cylindrical coordinates it is found that 

- F  
A = = - I T ,  

T (  s U )  D 
B = - � 89  ~ -  2 log ~ -  8npv 2 . 

Then the Velocity deficit at the center may be determined as 

- K l g l ( ~ )  = A log ~ + S .  

While from Tam's calculations the deficit is 

- K191 (~) = constant .  

This calculation has shown that the solution of Tam is not "unique" in the sense in which he 
chose to define it. 

It was mentioned earlier that Batchelor required the physically meaningful condition 
of a finite mass flux deficit for his solution. Consider the equation for the stream function 
[2, equation 27]. The particular integral for the flux deficit is the same as equation (12) above. 
Of interest is the limiting value 

~ ) =  lim ~l)( t / ) .  
r/--* oo 

Integrate (12) by parts to find 

T } f '7 [ ! l - -e - ' )  2 (1 -e - t )2  1 
~ )  = ~- lim (q-1)P( t l )+P(O)e-"-  t2 e -c"-') dt. (16) 

n~o o t 

Batchelor showed that for t /~  ~ ,  P(t/) ~ t/- 1. The integrals may be performed over two-regions : 
0 _  t_< 1 and 1 _< t _  t/. (Since I/is to be come large it may be taken greater than 1.) 

Over the first interval the integrands are bounded and independent  of t/. Consider the first 
integral in (16) evaluated over the interval 1 _< t _< t/. Expanded it may be written 

f :  [( e - t )  f ( - '  e ' )  t ] 
e t 2 e - '  e' 2 " " 

--e-" t~ -- t~ + ~ -  d t =  - e - "  ~ +  t 7~ I1 4- 2 tx t3 d 
1 

- - ~ - - 2 " 1 - 0 ( ~ ] - - 3 )  a s  t / ~ o o .  
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The second integral in (16) when expanded becomes 
e - t  e-2t '~  

j ~ \ t  - t 

ln t t - 2 e i ( 1 ) + e i ( 2 )  as t t~oe .  

Thus the mass flux as computed by Tam is logarithmically infinite. 
Next, that author went on to compute a correction (2 (1) to the circulation which he found 

to be independent of the mass flux correction ~p(l). This was so because the logarithmic term, 
given in equation (14), did not appear in his equation. The correct equation for f2 (j) is 

q ~ ( t ) . . . ~ ( 1 )  r~(1)• 0 (17) 

To determine the asymptotic behaviour of Q(1) equation (17) is integrated from I/= 0 to ~ = ~ .  
Thisisequivalent to Batchelor'sprocedure ofintegratingover a cross-sectional plane [1, p. 653]. 
One is then led to seek an analogous solution 

1 (On(t/) log (+f212(t/)) 

where the f2~ satisfy the boundary conditions 

f2u (~ ,0 )=0 ,  (21~0 as t/--+oo, i = 1 , 2 .  

The solutions obtained are 

f211 (t]) = �89 

A f "  t l -  t ~ e - ' )  ~'~12(/~) = C2t] e-t/--] - ~ - t / e - "  dr .  
0 

The constant A is the same as in equation (15). C2, on the other hand, is indeterminate and must 
be given by the upstream conditions which do not enter explicitly here. 
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